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Abstract
In this paper, we propose a deep learning based system
for detecting anomaly of respiratory sounds. The sys-
tem is separated into two main steps: front-end feature
extraction and back-end classification. In the first step,
audio recordings of respiratory cycles collected from pa-
tients are transformed into Gammatone-filter based spec-
trograms, where both temporal and frequency features
of respiratory sounds are presented. In the second step,
a convolutional neural network (CNN) based architec-
ture, referred to as the baseline, is proposed to detect
whether the input sound contains anomaly. To further
improve the baseline performance, we then propose a
triplet-based network architecture in which parallel CNN
baseline networks and triplet loss function are combined.
To make our work comparable, we evaluate our systems
on the 2017 Internal Conference on Biomedical Health
Informatics (ICBHI), which is one of the largest pub-
lic benchmark respiratory sound datasets. Our experi-
mental results show that the proposed CNN baseline and
triplet-network architecture outperform the ICBHI base-
line, improving by 5.0% and 7.0%, respectively.

Clinical relevance— Wheeze, crackle, deep neural net-
work, triplet loss, data augmentation.

Introduction
According to the World Health Organization [1], the res-
piratory illness is one the most common mortality fac-
tors worldwide. The record [1] indicates that around 10
million people have tuberculosis (TB), 65 million peo-
ple currently have chronic obstructive pulmonary disease
(COPD), and 334 million people suffer from asthma. To
deal with the morality from respiratory diseases, early
detection, which is useful to prevent spread and fur-
ther enhance treatment, is considered as the most ef-
fective way. The fact is that anomaly of lung sounds
such as Crackles or Wheezes normally occur in respi-
ratory cycles of patients who suffer from relevant-lung
diseases. Therefore, detection of these abnormal respira-
tory sounds during a lung auscultation (i.e. an important
aspect of a medical examination) is an effective way for
early diagnosis of respiratory diseases. This motivates
to develop automatically detected tools, which are able
to detect abnormal sounds and aim to apply to a wider
population. Recently, analysis of respiratory sounds has
drawn increasing attention and many attempts have been
made using machine learning, particularly deep learning.
Machine learning systems proposed in [2] and [3] used

Mel-frequency cepstral coefficients (MFCC) as extract-
ing features. Next, MFCC features are fed into machine
learning models such as Hidden Markov Model [2, 3],
Support Vector Machine [4].Deep learning based systems
made use of spectrogram where both spectral and tem-
poral information are well presented. To explore spectro-
grams, diverse deep learning networks such as CNN [5]
or RNN [6] have been proposed. Compared to systems
relying on more conventional machine learning methods,
deep learning based systems have been shown to be more
advanced, evidenced by the comprehensive performance
comparison in [6]. Inspired by the efficacy of deep learn-
ing based systems used for analysing respiratory sounds,
a deep learning network combined with triplet loss is
proposed in this paper. The proposed system is used
for detecting respiratory cycles defined in 2017 Internal
Conference on Biomedical Health Informatics (ICBHI)
benchmark dataset [7].

ICBHI dataset, task defined, data split-
ting, and evaluated metrics
The public ICBHI benchmark dataset consists of 920 au-
dio recordings collected from a total of 128 patients over
5.5 hours. The recordings show a wide range of sam-
pling frequencies ranging from 4 to 44.1 kHz and various
lengths ranging from 10 to 90 s. In each audio recording,
there are multiple of respiratory cycles marked with onset
and offset time and labelled with one of four categories
namely Crackle, Wheeze, Both (Crackle & Wheeze), and
Normal. It is fact that ICBHI dataset is unbalanced, es-
pecially between Both and Normal categories. Further-
more, Both cycles contains both Crackle and Wheeze,
posing challenges for the back-end classifiers to distin-
guish Normal from Crackle and Wheeze.

Given ICBHI dataset, this paper aims to classify respira-
tory cycles mentioned, propose two main tasks of classi-
fying four different types of cycles (Crackle, Wheeze, Both
and Normal) and two types of cycles (group of abnormal
cycles with Crackle, Wheeze, Both and Normal cycle),
referred to as Task 1 and Task 2, respectively. To evalu-
ate our proposed system, we use three evaluation metrics:
Sensitivity (Sen.), Specitivity (Spec.) and ICBHI scores
(Average of Spec. and Sen.), which are also the metrics
used in the ICBHI challenge mentioned in [8, 9, 10]. To
make our work comparable, we propose two ways of split-
ting data. Obeying the ICBHI challenge, the first uses
a ratio of 60/40 for training/test subsets (note that this
splitting way prevents a subject presenting in both sub-
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sets). The second splitting randomly splits the data with
a ratio of 80/20 for training/test set regardless which sub-
ject a cycle belongs to.

The baseline system proposed
We firstly present a baseline system as shown in Figure
1, which is composed of two main steps described below.

The front-end feature extraction
The first step, referred to as front-end feature extrac-
tion, is illustrated in the upper part of Figure 1. Res-
piratory cycles are firstly separated from audio record-
ings. We re-sample all cycles to a common sampling
frequency of 16000 Hz to deal with different sample fre-
quencies. As respiratory cycles shows different lengths,
cycles are duplicated to ensure the same length of 5 sec-
onds. Next, these respiratory cycles are transformed into
spectrograms by using Gammatone filterbank with the
filter number set to 64, the window size of 1024 and
the hop size of 400. Finally, the Gammatone spectro-
grams (Gamma) are split into non-overlapped patches of
64×128, which are then fed into the back-end classifier.

The back-end classifier
Regarding the back-end classifier illustrated in the lower
part of Figure 1, we propose a CNN-DNN based archiec-
ture configured in Table 1. The proposed CNN-DNN net-
work is composed of two main parts: CNN and DNN. The
CNN part contains four sub-blocks which perform batch
normalization (BN), convolution (Conv [kernel size]),
rectified linear units (ReLU), max pooling (MP [kernel
size]), global max pooling (GMP), dropout (Dr (percent-
age drop)) as shown in the upper part of Table 1. Due
to use global max pooling (GMP) across channel dimen-
sion at the final block CNN-BL04, the output of CNN
part is an embedding vector with size of 512 (i.e. the size
of embedding vectors equals to the number of channels
set to the convolutional layer (Conv)). The DNN part
is composed of two sub-blocks of DNN-BL01 and DNN-
BL02. While the fully-connected layer (FC) of DNN-
BL01 is followed by rectified linear units (ReLU) and
dropout (Dr (percentage drop)), Sigmoid is used after
the fully-connected layer of DNN-BL02. We employ focal
loss function for network training as it has been proven
suitable for imbalanced data [11].

Experimental setup for the baseline
To generate spectrogram, we used Gammatone-like spec-
trogram toolbox from [12]. Meanwhile, the CNN-DNN
network was constructed on Tensorflow framework with
the focal loss Lf shown below

Lf = − 1

N

N∑
i=1

α(yi− ŷi)
β log(ŷi) + (1−α)ŷβi log(1− ŷi) (1)

where N is batch size, and constant α and β are set to
0.25 and 2, respectively. yi and ŷi denote expected and
predicted results, respectively. The training was carried
out for 100 epochs using Adam for optimization. As the
proposed CNN-DNN network works on image patches of
64×128, the result of an entire respiratory cycle is ob-
tained by an averaging result over its patches. Let us
consider pm = (pm1 , p

m
2 , . . . , p

m
C ) as the predicted proba-

bilities obtained from the mth out of M patches and C
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Figure 1: The architecture of the baseline system.

Table 1: The baseline network architecture proposed

Blocks Layers Output
Input layer (patch of 64×128×1)

CNN-BL01 BN - Conv [3×3] - ReLU - BN - MP [2×2] - Dr (10%) 32×64×64
CNN-BL02 BN - Conv [3×3] - ReLU - BN - MP [2×2] - Dr (15%) 16×32×128
CNN-BL03 BN - Conv [3×3] - ReLU - BN - MP [2×2] - Dr (20%) 8×16×256
CNN-BL04 BN - Conv [3×3] - ReLU - BN - GMP - Dr (25%) 512

Input layer (512-dimensional embeddings)
DNN-BL01 FC - Relu - Dr (30%) 1024
DNN-BL02 FC - Sigmoid 4

as the number of categories classified. Then, the classi-
fication probabilite of an entire recording is denoted as
p̄ = (p̄1, p̄2, . . . , p̄C) where

p̄c =
1

M

M∑
m=1

pmc for 1 ≤ c ≤ C. (2)

The predicted label ŷ is then determined as

ŷ = arg max
c∈{1,2,...,C}

p̄c. (3)

Triplet-DNN network proposed for im-
proving back-end classification
The proposed system improves upon the CNN-DNN
baseline system. While the font-end feature extraction
is kept unchanged, we seek to improve the back-end clas-
sifier. Specifically, we propose triplet-DNN network to
replace the CNN-DNN architecture. As shown in Figure
2, the proposed triplet-DNN network follows a two-stage
traning process. In the first stage shown in the left part
of Figure 2, we employ three parallel CNN-DNN network
architectures and make use of a combination of focal loss
and triplet loss, referred to as the first-stage triplet net-
work. Regarding the CNN-DNN architecture in the first-
stage triplet network, we reused CNN-DNN baseline. By
using three parallel CNN-DNN architectures, we obatain
three probability outputs, which are considered as an-
chor, positive, and negative for triplet loss. While each
probability output of individual CNN-DNN network is
handled by a focal loss, triplet loss optimizes three prob-
ability outputs as below,

Lt = max(d(pa,pp)− d(pa,pn) +margin, 0) (4)

where d denotes Euclidean distance. pa, pp, pn denote
the probability outputs of the anchor, positive, and neg-
ative inputs respectively, the margin is set to 0.3 in this
work. The final loss function Loss is a combination of
the triplet loss function as Eq. (4) and three focal losses

Loss = γ(Lfa + Lfp + Lfn) + (1 − γ)Lt (5)
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Figure 2: Triplet-DNN network architecture for further im-
proving back-end classification

Table 2: The second-stage DNN network architecture

Blocks Layers Output
Input layer (512-dimensional embeddings)

DNN-BL03 FC - ReLU - Dr (30%) 128
DNN-BL04 FC - ReLU - Dr (30%) 128
DNN-BL05 FC - Softmax 3

where Lfa , Lfp and Lfn are focal loss functions used for
anchor, positive and negative probability output, respec-
tively. γ is the hyper-parameter that trade-offs the focal
losses and the triplet loss.

As there are three probability outputs from three CNN-
DNN network streams, we fuse their probability outputs
as

pave =
pa + pp + pn

3
(6)

where pave = (p̄1, p̄2, . . . , p̄C) is the average probability
output. Finally, predicted result over an entire cycles is
obtained by applying Eq. (2) and (3). Since the data is
considerably imbalanced between Normal and Both, and
a Both cycles contains both Crackle and Wheeze, only
three categories of Crackle, Wheeze and Normal are used
for training the first-stage triplet network. For instance,
when positive and anchor input are Crackle or Wheeze,
the negative input is always set to Normal, and vice versa.

To further encourage the first-stage triplet network to en-
large Fisher’s criterion (i.e. the ratio of the between- class
variance to the within-class variance in the feature space)
between Normal and others, we apply mixup data aug-
mentation [13] over input patches. By using mixup aug-
mentation, when a Crackle and Wheeze cycle are mixed
with a certain ratio, new image patches of Both cycles are
created. Therefore, although Both cycles are not used for
training the first-stage triplet network, when they are fed
into the network for inference, classification results could
be Crackle or Wheeze. To detect Both cycles, the em-
bedding features of 512-dimension vectors, are extracted
from output of CNN part of CNN-DNN network streams
as shown in right part of Figure 2. As using three CNN-
DNN architectures, we obtain anchor, positive and nega-
tive embeddings denoted as ea, ep, and en, respectively.
We then compute the average of three embeddings as

ē =
ea + ep + en

3
. (7)

Table 3: Variants of CNN architecture evaluated

Blocks Layers Output
Vgg-8 Input layer (patch of 64×128×1)
CNN-BL01 BN - Conv [3×3] - ReLU - BN - MP [2×2] - Dr (10%) 32×64×64
CNN-BL02 BN - Conv [3×3] - ReLU - BN - MP [2×2] - Dr (15%) 16×32×128
CNN-BL03 BN - 2×(Conv [3×3] - ReLU) - BN - MP [2×2] - Dr (20%) 8×16×256
CNN-BL04 BN - 2×(Conv [3×3] - ReLU) - BN - GMP - Dr (25%) 512
Vgg-10 Input layer (patch of 64×128×1)
CNN-BL01 BN - 2×(Conv [3×3] - ReLU) - BN - MP [2×2] - Dr (10%) 32×64×64
CNN-BL02 BN - 2×(Conv [3×3] - ReLU) - BN - MP [2×2] - Dr (15%) 16×32×128
CNN-BL03 BN - 2×(Conv [3×3] - ReLU) - BN - MP [2×2] - Dr (20%) 8×16×256
CNN-BL04 BN - 2×(Conv [3×3] - ReLU) - BN - GMP - Dr (25%) 512
Vgg-12 Input layer (patch of 64×128×1)
CNN-BL01 BN - 2×(Conv [3×3] - ReLU) - BN - MP [2×2] - Dr (10%) 32×64×64
CNN-BL02 BN - 2×(Conv [3×3] - ReLU) - BN - MP [2×2] - Dr (15%) 16×32×128
CNN-BL03 BN - 3×(Conv [3×3] - ReLU) - BN - MP [2×2] - Dr (20%) 8×16×256
CNN-BL04 BN - 3×(Conv [3×3] - ReLU) - BN - GMP - Dr (25%) 512

The average embedding feature ē is then fed into a
DNN based network for classifying Crackle, Wheeze and
Both, referred to as the second-stage DNN. The second-
stage DNN is configured by DNN-BL03, DNN-BL04, and
DNN-BL05 as shown in Table 2. Notably, if an image
patch is classified as Crackle or Wheeze by the first-stage
triplet network, it will be further presented to the second-
stage DNN network to classify to Crackle, Wheeze, or
Both.

As the CNN part in an CNN-DNN architecture is consid-
ered as a high-level feature extractor which condenses an
image patch input into a discriminative embedding, we
evaluate three different CNN variants to study their ef-
fects on the performance. These variants are constructed
by replicating the two layers Conv-ReLU in the CNN
sub-blocks (i.e., CNN-BL01/02/03/04) while keeping the
DNN fixed, resulting in CNN-DNN architectures simi-
lar to VGG-8, VGG-10, and VGG-12 as shown in the
upper, middle and lower part of Table 3, respectively.
The triplet-DNN networks which use VGG-8, VGG-10
and VGG-12 architectures are called as triplet(VGG-8)-
DNN, triplet(VGG-10)-DNN and triplet(VGG-12)-DNN,
respectively. Regarding experimental settings, both the
first-stage triplet and second-stage DNN networks are
constructed with Tensorflow framework. Other experi-
mental settings are similar to those in CNN-DNN base-
line system.

Experimental results and Discussion
We firstly compare the CNN-DNN baseline and the
triplet-DNN network with different γ used in Eq. (5).
According to the results shown in Table 4, the proposed
triplet-DNN networks outperform the CNN-DNN base-
line with the ICBHI challenge’s data split regardless the
value of γ, achieving the best ICBHI scores of 0.50 and
0.57 at λ = 0.8 for Task 1 and Task 2, respectively. How-
ever, the triplet-DNN is ineffective with random splitting
method. The gap of scores between two splitting meth-
ods also reveals that the performance highly depends on
the subject.

Fixing the optimal γ = 0.8, we evaluated the effect of us-
ing different CNN variants. The obtained results in Ta-
ble 5 show that the triplet(VGG-10)-DNN network with
random split achieves the best scores, gaining an ICBHI
score of 0.03 and 0.06 over the CNN-DNN baseline on
Task 1 and Task 2, respectively. With the ICBHI chal-
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Table 4: Performance comparison between the CNN-DNN
baseline and the proposed Triplet-DNN

Task & Systems Spec. Sen. ICBHI score
(ICBHI/random) (ICBHI/random) (ICBHI/random)

Task 1, CNN-DNN baseline 0.63/0.85 0.33/0.61 0.48/0.73
Task 1, triplet-DNN (γ = 0.9) 0.69/0.90 0.30/0.48 0.49/0.69
Task 1, triplet-DNN (γ = 0.8) 0.70/0.86 0.30/0.55 0.50/0.71
Task 1, triplet-DNN (γ = 0.7) 0.67/0.90 0.31/0.49 0.49/0.70
Task 1, triplet-DNN (γ = 0.6) 0.67/0.91 0.31/0.49 0.49/0.70
Task 1, triplet-DNN (γ = 0.5) 0.65/0.90 0.32/0.50 0.49/0.70
Task 1, triplet-DNN (γ = 0.4) 0.67/0.90 0.28/0.50 0.48/0.70
Task 1, triplet-DNN (γ = 0.3) 0.69/0.90 0.26/0.48 0.48/0.69
Task 1, triplet-DNN (γ = 0.2) 0.70/0.89 0.27/0.50 0.49/0.69
Task 1, triplet-DNN (γ = 0.1) 0.68/0.90 0.29/0.46 0.49/0.68
Task 2, CNN-DNN baseline 0.63/0.85 0.47/0.71 0.55/0.78
Task 2, triplet-DNN (γ = 0.9) 0.69/0.90 0.45/0.63 0.57/0.77
Task 2, triplet-DNN (γ = 0.8) 0.70/0.86 0.44/0.70 0.57/0.78
Task 2, triplet-DNN (γ = 0.7) 0.63/0.90 0.45/0.64 0.56/0.77
Task 2, triplet-DNN (γ = 0.6) 0.67/0.91 0.46/0.62 0.57/0.77
Task 2, triplet-DNN (γ = 0.5) 0.65/0.90 0.48/0.64 0.57/0.77
Task 2, triplet-DNN (γ = 0.4) 0.67/0.90 0.44/0.63 0.55/0.76
Task 2, triplet-DNN (γ = 0.3) 0.69/0.90 0.40/0.62 0.55/0.76
Task 2, triplet-DNN (γ = 0.2) 0.70/0.89 0.40/0.63 0.56/0.76
Task 2, triplet-DNN (γ = 0.1) 0.68/0.90 0.43/0.60 0.56/0.75

Table 5: Performance with variants of CNN (γ = 0.8)

Task & Systems Spec. Sen. ICBHI score
(λ = 0.8) (ICBHI/random) (ICBHI/random) (ICBHI/random)
Task 1, CNN-DNN baseline 0.63/0.85 0.33/0.61 0.48/0.73
Task 1, triplet-DNN 0.70/0.86 0.30/0.55 0.50/0.71
Task 1, triplet(vgg8)-DNN 0.67/0.91 0.21/0.51 0.44/0.71
Task 1, triplet(vgg10)-DNN 0.64/0.88 0.27/0.63 0.45/0.76
Task 1, triplet(vgg12)-DNN 0.67/0.85 0.19/0.61 0.43/0.73
Task 2, CNN-DNN baseline 0.63/0.85 0.47/0.71 0.55/0.78
Task 2, triplet-DNN 0.70/0.86 0.44/0.70 0.57/0.78
Task 2, triplet(vgg8)-DNN 0.67/0.91 0.46/0.72 0.56/0.81
Task 2, triplet(vgg10)-DNN 0.64/0.88 0.51/0.80 0.58/0.84
Task 2, triplet(vgg12)-DNN 0.67/0.85 0.49/0.82 0.58/0.84

lenge’s data split, the three CNN variants result in the
modest improvement in Task 2 and underperform in Task
1. Comparing to prior works, the performance obtained
by our proposed system is very competitive to the cur-
rent state-of-the-art as illustrated in Table 6 and 7 for
the two data splitting methods.

Conclusion
In this paper, we have explored a deep learning based
method and triplet loss for detecting respiratory anomaly
from lung sound recordings. Experiments over the ICBHI
benchmark dataset showed that our proposed system ob-
tained competitive results compared with the current
state-of-the-art, achieving our best ICBHI scores (Task
1/Task 2) of 0.50/0.57 and 0.76/0.84 with ICBHI and
random splitting, respectively.
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