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ABSTRACT
This report presents a low-complexity CNN-based deep learning
framework for acoustic scene classification task (ASC). In particu-
lar, the framework approaches spectrogram representation referred
to as front-end feature extraction. The spectrograms extracted are
fed into a CNN-based architecture for classification, referred to as
the baseline. Next, quantization and pruning techniques are applied
on the pre-trained baseline to fine-tune and further compress the
network size, eventually achieve low-complexity models with com-
petitive performance.

Index Terms— Convolutional Neural Network (CNN), prun-
ing, quantization, mixup data augmentation, spectrogram, Gamma-
tone filter.

1. INTRODUCTION

Deep Learning has become main approach for various research
fields such as computer vision, natural language processing, and re-
cently emerging research field named “machine hearing” [1]. As re-
gards acoustic scene classification (ASC), one of main tasks of “ma-
chine listening”, CNN-based network architectures have surpassed
human performance [2]. However, the state-of-the-art systems have
come at an increasing cost of computation due to complex model
used, which makes challenge for edge applications. Indeed, the
summary of system characteristics [3] reported in recent DCASE
20219 indicated that almost top-ten performance architectures pro-
posed exceed 6 M non-zero parameters. Even some systems pre-
sented very complex models that used more than 100 M non-zero
parameters. To deal with this challenge, model compression tech-
niques have drawn increasing attention in recent years. Two main
approaches of compression are quantization and pruning. Recently,
Tensorflow framework 2.0 provides a complete guide for both the
compression methods mentioned [4]. Though such model compres-
sion techniques have been widely studied in machine learning and
computer vision communities, they have less investigated in audio
tasks.

In this report, we firstly propose a deep learning framework
with low-complexity CNN-based model for the ASC task, referred
to as the baseline. Next, we adopt the quantization and pruning
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techniques provided by Tensorflow [4] to further compress and
fine-tune the pre-trained CNN baseline. We use DCASE 2020 Task
1B dataset to evaluate the framework with/without using these com-
pression techniques and compare to DCASE baseline.

2. DCASE 2020 TASK 1B DATASET

The DCASE 2020 Task 1B dataset [5] was recorded by a single de-
vice namely A with binaural channel and sample rate of 48kHz. The
dataset comprises of 10 acoustic scenes that are grouped into three
main contexts of indoor (airport, metro-station, and shopping-mall),
outdoor (park, public-square, street-pedestrian, street-traffic), and
transportation (bus, metro, tram). In this report, we obey DCASE
2020 challenge, separate development set into training and test sub-
sets used for training and testing processes, respectively. The accu-
racy on the test subset is reported.

3. CNN-BASED FRAMEWORK ARCHITECTURE
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Figure 1: The high-level architecture and processing sequence of
the proposed framework.

Table 1: Setting of spectrogram transformation.
Factors Setting
Spectrogram Gammatone
Window size 2048
Hop size 1024
FFT number 4096
Filter banks number 128
Min frequency 10 Hz
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Table 2: CNN-based network architecture
Architecture layers Output

Input layer (entire spectrogram) 128×428
Conv. Block 01 Bn - Cv [3×3] - Relu - Bn - Mp [2×4] - Dr (20%) 64×107×32
Conv. Block 02 Bn - Cv [3×3] - Relu - Bn - Mp [2×2] - Dr (25%) 32×54×64
Conv. Block 03 Bn - Cv [1×1] - Relu - Bn - Mp [2×4] - Dr (30%) 16×13×128
Conv. Block 04 Bn - Cv [1×1] - Relu - Bn - Gmp - Dr (35%) 256
Dense Block Fl - Softmax layer 3

The proposed framework is described in Fig. 1. Initially, raw
audio signal from the channel 1 is transformed into Gammatone
spectrogram (Gamma) [6] with parameters summarized in Table 1.
Then, mixup data augmentation [7, 8] is applied on entire spectro-
grams of 128×428 to generate new spectrograms. Next, the mixup
spectrograms are fed into a CNN-based network.

The CNN-based network configured as Table 2 comprises four
Conv. blocks and one Dense block, which are performed by Convo-
lutional layer (Cv[kernel size]), Rectified Linear Unit (Relu), Batch
normalization (Bn), Max pooling (Mp[kernel size]), Global max
pooling (Gmp), Drop out (Dr(Drop ratio)), Fully connected layer
(Fl), and Softmax layers.

After training the CNN-based network, two compression tech-
niques of 8-bits training aware quantization and pruning mentioned
in TensorFlow Model Optimization Toolkit [4] are applied to fine-
tune the pre-trained CNN-based network, thus achieve lower com-
plexity models, but remain competitive performance.

4. HYPERPARAMETER SETTING

The CNN-based network implemented use Keras framework. Net-
work training makes use of the Adam optimiser [9] with 100 train-
ing epochs, a mini batch size of 100. As using mixup data aug-
mentation makes labels are no longer one-hot encoded, Kullback-
Leibler (KL) [10] divergence loss is therefore used as,

LKL(θ) =

N∑
n=1

yn log

{
yn

ŷn

}
+
λ

2
||θ||22. (1)

where θ denotes the trainable network parameters and λ denote the
`2-norm regularization coefficient, set to 0.0001. N is the batch
number, yi and ŷi denote expected and predicted results, respec-
tively.

5. EXPERIMENTAL RESULTS

Table 3: Performance compared to DCASE 2020 Task 1B baseline
System Acc.(%) Non-zero para. (KB)
DCASE 2020 87.3 450.0
CNN network 93.0 245.5
CNN network w/ quantization 91.9 61.5
CNN network w/ pruning 90.5 122.8

As obtained results showed in Table 3, the CNN-based network
proposed outperforms DCASE baseline, recording an improvement
of 5.7%. As regards the complexity, our network’s size is nearly a
half of DCASE baseline. Further compressing the CNN network by
using quantization and pruning techniques, we achieve compressed

networks of 61.5 KB and 122.8 KB and remain outperformed accu-
racy of 91.9% and 90.5%, respectively.

In conclusion, we have resented a CNN-based framework ap-
plied for ASC task. Thank to Tensorflow framework, we can
achieve compressed and outperformed CNN-based networks com-
pared to DCASE 2020 Task 1B baseline.
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