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Abstract—This paper proposes a deep learning framework
applied for Acoustic Scene Classification (ASC), which iden-
tifies recording location. In general, we apply three types of
spectrograms: Gammatone (GAM), log-Mel and Constant Q
Transform (CQT) for front-end feature extraction. For back-
end classification, we present a re-trained model with a multi-
kernel CDNN-based architecture for the pre-trained process and
a DNN-based network for the post-trained process. Our obtained
results over DCASE 2016 dataset show a significant improvement,
increasing by nearly 8% compared to DCASE baseline of 77.2%.

Index Terms—Gammatone, log-Mel, Constant Q Transform
(CQT), Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN)

I. INTRODUCTION

Acoustic Scene Classification (ASC) task aims to detect
recording locations, showing one of main tasks in “Machine
hearing” research field [1]. In a sound scene recording, it
shows various sound events, located at a wide range of
frequency bands. If we refer sound event to signal and sound
scene to noise, the signal-to-noise ratio is changeable. More-
over, a long-time occurring sound event could be considered as
sound scene in certain contexts. For instance, residential-area
recording shows a quiet background and short-time engine
sound as events, but long-time occurring engine sound in
on bus context is considered as a background noise. These
variabilities therefore make ASC task more challenging.
In order to deal with the ASC challenges, recent papers exploit

multi-input feature, showing two main trends. The first trend is
using one kind of time-frequency feature such as log-Mel filter,
and next exploring different aspects over this spectrogram. For
example, multi-dimensional log-Mel spectrogram and wavelet
scalogram were effectively exploited in [2] and [3], respec-
tively. Besides, i-vector, extracted from Mel-Frequency Cep-
stral Coefficients (MFCC), was proposed by [4]. To approach
raw audio signal, Song et al. [5] proposed an auditory statistics
of a cochlear filter output, showing a good performance over
DCASE 2016 dataset. By contrast, the second trend exploits
multiple spectrograms. For instance, log-Mel filter and MFCC
were combined in [6], or MFCC, Gammatone filter and log-
Mel were used in [7], or even it shows various features such as
Perceptual Linear Prediction (PLP), MFCC, Power Nomalized
Cepstral Coefficients (PNCC), Robust Compressive Gamma-
chirp filter-bank Cepstral Coefficients (RCGCC) and Subspace
Projection Cepstral Coefficients (SPPCC) [8]. We inspire
the second approach for front-end feature extraction, using
different time-frequency spectrograms to enrich input feature.
In this paper, we therefore apply three spectrograms, gam-
matone (GAM) [9], log-Mel spectrogram [10] and Constant-
Q Transform (CQT) [10], proposing an ensemble of three
spectrograms.
For back-end classification, Convolutional Deep Neural Net-
work (CDNN) comes as a powerful approach for ASC. In fact,
the state-of-the-art introduced various network architectures
such as two parallel-CNN [11], fusion of various learning



models [12], hierarchical scheme of classification with CNN
in [13], or GRNN-based network proposed in [14]. In this
paper, we propose a re-trained model for ASC task. In
particular, we apply CDNN-based network with multi-kernel
architecture for the pre-trained process. Next, we extract high-
level feature from the pre-trained model, and then feeding
into a DNN-based network referred to the post-trained process
before reporting the final classification accuracy. In order to
enhance the classification accuracy, this work also applies a
data augmentation technique called mixup data, which comes
from research on image classification [15].

II. SYSTEM ARCHITECTURE
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Fig. 1. General system architecture

In general, we propose the whole system as shown in
Fig. 1 and Fig. 2. Firstly, the raw audio from one channel
(channel 01) is transferred into an entire spectrogram, two-
dimensional shape like an image. In this work, we apply three
types of transformation (GAM, log-Mel and CQT), totally
three spectrograms. Then, we split the whole spectrogram into
small patches, showing frequency and temporal resolution at
128 and 128, respectively. Before feeding patches into the pre-
trained process, we apply mixup data augmentation technique
to generate new patches. After that, we feed both new and
original patches into the pre-trained model.

A. Front-End Feature Extraction

As mentioned above, this paper uses GAM [9], log-Mel
[10] and CQT [10] methods to transfer audio segment into
spectrograms. These spectrograms are applied by the same
configuration as showed in Table I to create same size. With
the configuration as Table I, we obtain an entire spectrogram
with size of 5120. Then, we split this entire spectrogram into
40 patches with the size of 128× 128.

TABLE I
SETTING PARAMETERS OF SPECTROGRAM.

Parameters Values
Window Size 1920
Hop Size 256
Fast Fourier Number 4096
Frequency Min 10
Frequency Resolution 128

B. Back-end Classification

The general architecture of re-trained model mentioned in
Fig. 1 is described in detail in Fig. 2. In particular, the re-
trained model comprise of two training processes, pre-trained

and post-trained modes shown in the upper and lower parts
in Fig. 2, respectively. For the pre-trained process, the model
bases on CDNN architecture, comprising of four main CNN
blocks showing similar architectures. Look at the CNN-01
block for detailed analysis as shown in Table II, we firstly ap-
ply Batchnorm layer (Bn) over image patch (128x128). Next,
Bn output is fed into convolutional layers (Cv) with multi-
kernel setting (four different kernels setting size of [9x9],
[7x7], [5x5], [3x3]). Then, every output of convolutional layers
goes through Rectified Linear Unit (ReLu), BatchNorm (Bn),
Average Pooling (Ap) and DropOut (Dr) layers respectively
before concatenating according to channel dimension, obtain-
ing a tensor shape (64x64x32). Next CNN blocks show similar
architectures, but different from the final CNN-04 block. At
final convolutional layers, we use smaller kernel sizes of
([2x2], [3x3], [4x4] and [5x5]) due to a small frequency and
temporal resolution. After these convolutional layers, we apply
Global Average Pooling (Gl) over frequency and temporal
dimensions to reduce the tensor shape (16x16x256) to 256-
dimensional vectors. Next, we concatenate four these vectors
(coming from four convolutional layers), obtaining a 1024-
dimensional vector and feeding to back-end classification
(three Fully-connected layers (Fc) with 2048-2048-15 config-
uration). After the pre-trained model finishes, we extract high-
level feature (known as 1024-dimensional vector) from the pre-
trained model before feeding into a DNN-based architecture,
referred to the post-trained model as shown in the lower part of
Fig. 2. The configuration of post-trained models shows four
Fully-connected layers, setting 2048-4096-1024-15 to layers
in order.

TABLE II
CNN-01 BLOCK ARCHITECTURE

Layer Output
Input layer (image patch) 128×128
Bn - Cv (9×9) - Relu - Bn - Ap (2×2) - Dr (0.1) 64×64×8
Bn - Cv (7×7) - Relu - Bn - Ap (2×2) - Dr (0.1) 64×64×8
Bn - Cv (5×5) - Relu - Bn - Ap (2×2) - Dr (0.1) 64×64×8
Bn - Cv (3×3) - Relu - Bn - Ap (2×2) - Dr (0.1) 64×64×8
Output layer (tensor) 64×64×32

C. Data Augmentation

In this paper, we apply mixup data augmentation method to
increase data variation, which enforces the network learning
and increases Fisher criterion. Let’s consider two original data
as XA, XB and expected labels as YA, YB , we generate new
data as below equations:

Xmp1 = XA ∗ γ +XB ∗ (1− γ) (1)

Xmp2 = XA ∗ (1− γ) +XB ∗ γ (2)

Ymp1 = YA ∗ γ + YB ∗ (1− γ) (3)

Ymp2 = YA ∗ (1− γ) + YB ∗ γ (4)

with γ is random coefficient from unit distribution.

We feed both original data and new mixup data into
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Fig. 2. Re-trained model

the classifications, patch level and vector level for pre-trained
and post-trained processes, respectively.

D. Ensemble Method

As discussion in Section I above, we do experi-
ments over separated spectrograms and exploit an en-
semble model over them. In particular, If we consider
a vector Xlog−Mel[x1, x2, ..., x15], XGAM [x1, x2, ..., x15],
XCQT [x1, x2, ..., x15] as the probability output of the post-
trained process as regards log-Mel, GAM and CQT spectro-
grams respectively, we have a fusion strategy used in this work,
which is to compute the overall per-class mean, based on;

ŷ = argmax(Xlog−Mel +XGAM +XCQT ) (5)

where ŷ is predicted results.

E. Proposed Baseline

To explore the effect of multi-kernel architecture, we pro-
pose a baseline that shows a same number of convolutional
layers as Table III, but keep kernel size at [3x3] for all con-
volutional layers. We compare performance of the proposed
baseline and multi-kernel CDNN model (pre-trained process)
as mentioned in Fig. 2 with GAM spectrogram input.

TABLE III
PROPOSED BASELINE ARCHITECTURE

Layer Output
Input layer (image patch) 128×128
Bn - Cv (3×3) - Relu - Bn - Ap (2×2) - Dr (0.1) 64×64×32
Bn - Cv (3×3) - Relu - Bn - Ap (2×2) - Dr (0.1) 32×32×64
Bn - Cv (3×3) - Relu - Bn - Ap (2×2) - Dr (0.1) 16×16×128
Bn - Cv (3×3) - Relu - Bn - Gl - Dr (0.1) 256
Fc 512
Fc 1024
Fc 15

III. EXPERIMENTS AND RESULTS

A. Dataset and setting

This paper employs the DCASE 2016 dataset [16] with
totally 15 classes. In this dataset, sample rate at 44.1 kHz is
used and every segment shows 30 second recording duration.
The provided data comprises of two sets; a development set
(Dev Set) with 78 segments each class and an evaluation
set (Eva Set) with 26 segments each class for training and
evaluating, respectively. We did our experiments with Tensor-
flow framework, using Adam method for optimization, setting
learning rate, batch size and epoch number to 0.0001, 50 and
200, respectively. For mixup data augmentation, we applied
for both pre-trained and post-trained processes over patch level
and vector level, respectively.

B. Compared to DCASE 2016 baseline

Table IV shows a performance comparison among DCASE
2016 baseline, our proposed baseline, our pre-trained and
post-trained models with three different spectrogram inputs.
Compare between the pre-trained and post-trained results
over three spectrograms, the post-trained result is effective
to improve around 4% to 5%. For pre-trained results, our
proposed baseline and multi-kernel pre-trained model over
GAM spectrogram input improves by 2% and 4% compared
to DCASE baseline. Multi-kernel architecture is effective
to improve 2% compared to the proposed baseline with a
stable kernel. As regards results over post-trained processes,
log-Mel and GAM show equal results, improving by nearly
6.5% compared to DCASE 2016 of 77.2%. Meanwhile,
performance over CQT are poorer with classification accuracy
of 78.7%. Our ensemble method over post-trained results of
three spectrograms is useful to achieve the best accuracy of
85.1%.

As regards classification accuracy over 15 classes, Fig. 3
shows post-trained results over three separated spectrograms,
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Fig. 4. Confusion matrix of our ensemble model

ensemble of them, compared to DCASE 2016 baseline.
It is noted that results over CQT spectrogram show high
performance over certain classes such as bus, cafe, forest-path,
metro-station, office, tram, but poor performance over the
others. GAM and log-Mel spectrogram show equal results
over 15 classes, but ensemble significantly outperforms
over DCASE baseline and other spectrograms. In general,
ensemble is effective to improve DCASE baseline over almost
classes a part from cafe, home and residential-area. Fig.
4 shows a confused matrix over ensemble results over 15
classes. The color map shows cases of inaccuracy occurring
among certain classes. For instances, train and tram, park and
residential-area, or home and library shows these inaccurate
pairs due very similar environment. Another inaccurate results
over cafe and grocery-store, showing babble noise, also prove
high correlation between two environmental sounds.

TABLE IV
COMPARISON OUR SYSTEMS TO DCASE BASELINE

System Pre/Post-trained Acc.
DCASE 2016 77.2
Baseline 79.7
CQT 74.4/78.7
log-Mel 79.0/83.6
GAM 81.3/83.8
Ensemble 82.1/85.1

C. Compared to the state-of-the-art

Compare to the state-of-the-art, we separated into two Table
V and Table VI, the first table for single model comparison
and the second for the best obtained accuracy. For Table V,
it shows a comparison among top DCASE 2016 challenges,
and our proposed single model with GAM spectrogram input
achieve top-six accuracy. For recently published system as
show in Table VI, we achieve top-nine accuracy over DCASE
2016 challenge and a very competitive result to the state-of-
the-art. In general, ensemble models show higher performance
than single models.

TABLE V
COMPARISON TO TOP-SIX SINGLE MODEL IN DCASE 2016 CHALLENGE

System Classifier Acc.
DCASE Baseline CNN 77.2
Bae et al. [17] CNN-RNN 84.1
Lee et al. [18] CNN 84.6
Takahashi et al. [19] DNN-GMM 85.6
Kumar et al. [20] SVM 85.9
Valenti et al. [21] CNN 86.2
Bisot et al. [22] NMF-SVM 87.7
Our single model CNN-DNN 83.8

IV. CONCLUSION

In this work, we propose a re-trained model that aims
for Acoustic Scene Classification task, and an ensemble
model over these different spectrograms. To deal with ASC



TABLE VI
COMPARISON BETWEEN THE TOP-TEN DCASE 2016 COMPETITION
ARCHITECTURE ACCURACIES (TOP), RECENTLY PUBLISHED PAPERS
USING DCASE 2016 DATA (MIDDLE), AND THE PROPOSED METHOD

(BOTTOM) ON THE DCASE 2016 EVA DATASET.

System Classifier Accuracy
Bae et al. [17] CNN-RNN 84.1
Lee et al. [18] CNN 84.6
Lee et al. [23] CNN ensemble 85.4
Takahashi et al. [19] DNN-GMM 85.6
Kumar et al. [20] SVM 85.9
Valenti et al. [21] CNN 86.2
Marchi et al. [24] Ensemble 86.4
Ko et al. [8] Ensemble 87.2
Bisot et al. [22] NMF 87.7
Eghbal-Zadeh et al. [4] Ensemble 89.7
Shefali Waldekar et al. [3] SVM 81.2
Seongkyu Mun et al. [25] DNN 86.3
Juncheng Li et al. [6] Ensemble 88.2
Rakib Hyder et al. [26] Ensemble 88.5
Hongwei et al. [5] SVM 89.5
Yifang Yin et al. [2] Ensemble 91.0
Our ensemble model Ensemble 85.1

challenges, we investigate whether multi-kernel architecture
and ensemble of multi-spectrogram input could be effective
to obtain high performance. Our extensive experiments over
DCASE 2016 dataset achieve competitive results compared
to both DCASE 2016 challenge and the state-of-the-art.

For future work, we will investigate the contribution of
channels to classification accuracy, and how to combine var-
ious input features coming from channels and spectrograms.

REFERENCES

[1] R. F. Lyon, Human and Machine Hearing. Cambridge University Press,
2017.

[2] Y. Yin, R. R. Shah, and R. Zimmermann, “Learning and fusing
multimodal deep features for acoustic scene categorization,” in ACM
Multimedia Conference on Multimedia Conference. ACM, 2018, pp.
1892–1900.

[3] S. Waldekar and G. Saha, “Wavelet transform based mel-scaled features
for acoustic scene classification,” in Pro. INTERSPEECH, 2018, pp.
3323–3327.

[4] H. Eghbal-Zadeh, B. Lehner, M. Dorfer, and G. Widmer, “CP-JKU sub-
missions for DCASE-2016: a hybrid approach using binaural i-vectors
and deep convolutional neural networks,” DCASE2016 Challenge, Tech.
Rep., September 2016.

[5] H. Song, J. Han, and D. Shiwen, “A compact and discriminative feature
based on auditory summary statistics for acoustic scene classification,”
in Pro. INTERSPEECH, 2018, pp. 3294–3298.

[6] J. Li, W. Dai, F. Metze, S. Qu, and S. Das, “A comparison of deep
learning methods for environmental sound detection,” in Pro. ICASSP.
IEEE, 2017, pp. 126–130.

[7] H. Phan, L. Hertel, M. Maass, P. Koch, R. Mazur, and A. Mertins,
“Improved audio scene classification based on label-tree embeddings and
convolutional neural networks,” IEEE Transactions On Audio, Speech,
And Language Processing, vol. 25, no. 6, pp. 1278–1290, 2017.

[8] S. Park, S. Mun, Y. Lee, and H. Ko, “Score fusion of classification
systems for acoustic scene classification,” DCASE2016 Challenge, Tech.
Rep., September 2016.

[9] D. P. W. . Ellis. Gammatone-like spectrogram. [Online]. Available:
http://www.ee.columbia.edu/dpwe/resources/matlab/gammatonegram

[10] McFee, Brian, R. Colin, L. Dawen, D. PW.Ellis, M. Matt, B. Eric,
and N. Oriol, “librosa: Audio and music signal analysis in python,”
in Proceedings of The 14th Python in Science Conference, 2015, pp.
18–25.

[11] T. Lidy and A. Schindler, “Cqt-based convolutional neural networks for
audio scene classification,” in Pro. DCASE2016, 2016, pp. 60–64.

[12] G. Mafra, N. Duong, A. Ozerov, and P. Pérez, “Acoustic scene classifi-
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